Metaplasticity as a Neural Substrate for Adaptive Learning and Choice under Uncertainty.
نویسندگان
چکیده
Value-based decision making often involves integration of reward outcomes over time, but this becomes considerably more challenging if reward assignments on alternative options are probabilistic and non-stationary. Despite the existence of various models for optimally integrating reward under uncertainty, the underlying neural mechanisms are still unknown. Here we propose that reward-dependent metaplasticity (RDMP) can provide a plausible mechanism for both integration of reward under uncertainty and estimation of uncertainty itself. We show that a model based on RDMP can robustly perform the probabilistic reversal learning task via dynamic adjustment of learning based on reward feedback, while changes in its activity signal unexpected uncertainty. The model predicts time-dependent and choice-specific learning rates that strongly depend on reward history. Key predictions from this model were confirmed with behavioral data from non-human primates. Overall, our results suggest that metaplasticity can provide a neural substrate for adaptive learning and choice under uncertainty.
منابع مشابه
A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)
Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملA model of cerebellar metaplasticity.
The term "learning rule" in neural network theory usually refers to a rule for the plasticity of a given synapse, whereas metaplasticity involves a "metalearning algorithm" describing higher level control mechanisms for apportioning plasticity across a population of synapses. We propose here that the cerebellar cortex may use metaplasticity, and we demonstrate this by introducing the Cerebellar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 94 2 شماره
صفحات -
تاریخ انتشار 2017