Metaplasticity as a Neural Substrate for Adaptive Learning and Choice under Uncertainty.

نویسندگان

  • Shiva Farashahi
  • Christopher H Donahue
  • Peyman Khorsand
  • Hyojung Seo
  • Daeyeol Lee
  • Alireza Soltani
چکیده

Value-based decision making often involves integration of reward outcomes over time, but this becomes considerably more challenging if reward assignments on alternative options are probabilistic and non-stationary. Despite the existence of various models for optimally integrating reward under uncertainty, the underlying neural mechanisms are still unknown. Here we propose that reward-dependent metaplasticity (RDMP) can provide a plausible mechanism for both integration of reward under uncertainty and estimation of uncertainty itself. We show that a model based on RDMP can robustly perform the probabilistic reversal learning task via dynamic adjustment of learning based on reward feedback, while changes in its activity signal unexpected uncertainty. The model predicts time-dependent and choice-specific learning rates that strongly depend on reward history. Key predictions from this model were confirmed with behavioral data from non-human primates. Overall, our results suggest that metaplasticity can provide a neural substrate for adaptive learning and choice under uncertainty.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)

Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems

This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

A model of cerebellar metaplasticity.

The term "learning rule" in neural network theory usually refers to a rule for the plasticity of a given synapse, whereas metaplasticity involves a "metalearning algorithm" describing higher level control mechanisms for apportioning plasticity across a population of synapses. We propose here that the cerebellar cortex may use metaplasticity, and we demonstrate this by introducing the Cerebellar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 94 2  شماره 

صفحات  -

تاریخ انتشار 2017